Android

您所在的位置:网站首页 android view的绘制原理 Android

Android

2023-09-20 13:41| 来源: 网络整理| 查看: 265

前面的文章介绍了绘制的主要流程和基础组件,包括Vsync的主要流程,Surface的创建流程,Canvas相关的组件,现在可以开始绘制了。前面的文章已经分析过,现在默认是开启硬件加速的,因此会使用HardwareRenderer来进行绘制,涉及的内容较多,本文仅介绍HardwareRenderer的初始化流程。

1. ViewRootImpl

HardwareRendererder的初始化是再ViewRootImpl在完成的,再setView方法中,会调用enableHardwareAcceleration方法:

public void setView(View view, WindowManager.LayoutParams attrs, View panelParentView, int userId) { if (mSurfaceHolder == null) { enableHardwareAcceleration(attrs); } } private void enableHardwareAcceleration(WindowManager.LayoutParams attrs) { ... mAttachInfo.mThreadedRenderer = ThreadedRenderer.create(mContext, translucent, attrs.getTitle().toString()); ... }

frameworks/base/core/java/android/view/ThreadedRenderer.java

public static ThreadedRenderer create(Context context, boolean translucent, String name) { return new ThreadedRenderer(context, translucent, name); }

当relayoutWindow完成后,初始化了BlastBufferQueue,然后通过这个queue创建出了一个新的Surface,然后复制给到ViewRootImpl的mSurface,从而mSurface变成可用状态。

private void performTraversals() { ... relayoutResult = relayoutWindow(params, viewVisibility, insetsPending); ... if (surfaceCreated) { ... if (mAttachInfo.mThreadedRenderer != null) { ... hwInitialized = mAttachInfo.mThreadedRenderer.initialize(mSurface); if (hwInitialized && (host.mPrivateFlags & View.PFLAG_REQUEST_TRANSPARENT_REGIONS) == 0) { // Don't pre-allocate if transparent regions // are requested as they may not be needed mAttachInfo.mThreadedRenderer.allocateBuffers(); } ... } } else { .... } ... private int relayoutWindow(WindowManager.LayoutParams params, int viewVisibility, boolean insetsPending) throws RemoteException { ... int relayoutResult = mWindowSession.relayout(mWindow, params,,,,); if (mSurfaceControl.isValid()) { final Surface blastSurface = getOrCreateBLASTSurface(); // If blastSurface == null that means it hasn't changed since the last time we // called. In this situation, avoid calling transferFrom as we would then // inc the generation ID and cause EGL resources to be recreated. if (blastSurface != null) { mSurface.transferFrom(blastSurface); } } if (mAttachInfo.mThreadedRenderer != null) { ... mAttachInfo.mThreadedRenderer.setSurfaceControl(mSurfaceControl); } } ... }

performTraversals 这里有两个步骤

调用relayoutWindow去生成有效的SurfaceControl,然后调用AttachInfo.mThreadedRenderer.setSurfaceControl方法设置到mThreadedRenderer relayout结束后,生成有效的Surface,然后调用mThreadedRenderer.initialize进行初始化,接着调用了allocateBuffers来分图形缓存。因此初始化中,我们主来分析这几个方法。 2. ThreadedRenderer构造方法

ThreadedRenderer继承自HardwareRenderer,因此构造方法直接进入HardwareRenderer的构造方法 frameworks/base/graphics/java/android/graphics/HardwareRenderer.java

public HardwareRenderer() { ProcessInitializer.sInstance.initUsingContext(); mRootNode = RenderNode.adopt(nCreateRootRenderNode()); mRootNode.setClipToBounds(false); mNativeProxy = nCreateProxy(!mOpaque, mRootNode.mNativeRenderNode); if (mNativeProxy == 0) { throw new OutOfMemoryError("Unable to create hardware renderer"); } Cleaner.create(this, new DestroyContextRunnable(mNativeProxy)); ProcessInitializer.sInstance.init(mNativeProxy); }

这里调用了很多的native函数来进行初始化

2.1 ProcessInitializer.sInstance.initUsingContext synchronized void initUsingContext() { if (mContext == null) return; initDisplayInfo(); nSetIsHighEndGfx(ActivityManager.isHighEndGfx()); mContext = null; }

调用initDisplayInfo初始化DisplayInfo

private void initDisplayInfo() { DisplayManager dm = (DisplayManager) mContext.getSystemService(Context.DISPLAY_SERVICE); Display display = dm.getDisplay(Display.DEFAULT_DISPLAY); Mode activeMode = display.getMode(); nInitDisplayInfo(activeMode.getPhysicalWidth(), activeMode.getPhysicalHeight(), display.getRefreshRate(), wideColorDataspace.mNativeDataspace, display.getAppVsyncOffsetNanos(), display.getPresentationDeadlineNanos()); mDisplayInitialized = true; }

获取默认显示器,然后调用nInitDisplayInfo,传入的物理宽度,长度,刷新率等信息。 frameworks/base/libs/hwui/jni/android_graphics_HardwareRenderer.cpp

static void android_view_ThreadedRenderer_initDisplayInfo(JNIEnv*, jclass, jint physicalWidth, jint physicalHeight, jfloat refreshRate, jint wideColorDataspace, jlong appVsyncOffsetNanos, jlong presentationDeadlineNanos) { DeviceInfo::setWidth(physicalWidth); DeviceInfo::setHeight(physicalHeight); DeviceInfo::setRefreshRate(refreshRate); DeviceInfo::setWideColorDataspace(static_cast(wideColorDataspace)); DeviceInfo::setAppVsyncOffsetNanos(appVsyncOffsetNanos); DeviceInfo::setPresentationDeadlineNanos(presentationDeadlineNanos); }

将显示器的信息保存到DeviceInfo,因此在底层后续就可以知道显示器的这些信息。

2.2 初始化RootRenderNode

调用jni方法nCreateRootRenderNode来生成RootRenderNode的对象

static jlong android_view_ThreadedRenderer_createRootRenderNode(JNIEnv* env, jobject clazz) { RootRenderNode* node = new RootRenderNode(std::make_unique(env)); node->incStrong(0); node->setName("RootRenderNode"); return reinterpret_cast(node); }

生成一个RootRenderNode对象,并返回其指针给java层,java层构造一个RenderNode对象来持有这个指针,

public static RenderNode adopt(long nativePtr) { return new RenderNode(nativePtr); }

将这个对象赋值给mRootNode。RenderNode的构造方法如下:

private RenderNode(long nativePtr) { mNativeRenderNode = nativePtr; NoImagePreloadHolder.sRegistry.registerNativeAllocation(this, mNativeRenderNode); mAnimationHost = null; } 2.3 创建RenderProxy

调用nCreateProxy来创建一个RenderProxy,RenderProxy是向上提供API,其内部真正起作用的是RenderThread 和DrawFrameTask, RenderProxy的大部分方法都会通过向ReaderThread的工作队列里添加任务去执行,或者通过DrawFrameTask 去绘制一帧。

static jlong android_view_ThreadedRenderer_createProxy(JNIEnv* env, jobject clazz, jboolean translucent, jlong rootRenderNodePtr) { RootRenderNode* rootRenderNode = reinterpret_cast(rootRenderNodePtr); ContextFactoryImpl factory(rootRenderNode); RenderProxy* proxy = new RenderProxy(translucent, rootRenderNode, &factory); return (jlong) proxy; }

构造出RenderProxy对象,然后将这个指针保存到HardwareRender的mNativeProxy字段。

RenderProxy::RenderProxy(bool translucent, RenderNode* rootRenderNode, IContextFactory* contextFactory) : mRenderThread(RenderThread::getInstance()), mContext(nullptr) { mContext = mRenderThread.queue().runSync([&]() -> CanvasContext* { return CanvasContext::create(mRenderThread, translucent, rootRenderNode, contextFactory); }); mDrawFrameTask.setContext(&mRenderThread, mContext, rootRenderNode, pthread_gettid_np(pthread_self()), getRenderThreadTid()); }

构造RenderProxy的时候,会初始化RenderThread 和CanvasContext. 创建CanvasContext的时候,调用了mRenderThread.queue().runSync方法,这个类似Handler的runWithScissors,需要lamda执行完才返回。最后将renderThread,canvasContex和rootRenderNode设置到mDrawFrameTask。

2.4 创建RenderThread

RenderThread是一个无限循环的线程,它有一个queue来接受任务,有任务来时唤醒线程进行执行。这在HardwareRender初始化时需要将RenderThread初始化。这是一个单例对象,通过RenderThread::getInstance()来获取创建好的对象。 frameworks/base/libs/hwui/renderthread/RenderThread.cpp

RenderThread& RenderThread::getInstance() { [[clang::no_destroy]] static sp sInstance = []() { sp thread = sp::make(); thread->start("RenderThread"); return thread; }(); gHasRenderThreadInstance = true; return *sInstance; } RenderThread::RenderThread() : ThreadBase() , mVsyncSource(nullptr) , mVsyncRequested(false) , mFrameCallbackTaskPending(false) , mRenderState(nullptr) , mEglManager(nullptr) , mFunctorManager(WebViewFunctorManager::instance()) , mGlobalProfileData(mJankDataMutex) { Properties::load(); }

RenderThread继承自ThreadBase,当调用start启动线程的时候,会执行threadLoop方法:

bool RenderThread::threadLoop() { setpriority(PRIO_PROCESS, 0, PRIORITY_DISPLAY); Looper::setForThread(mLooper); if (gOnStartHook) { gOnStartHook("RenderThread"); } initThreadLocals(); while (true) { waitForWork(); processQueue(); ... } return false; }

此时RenderThread就绪,等待Queue里出现任务。

2.5 创建CanvasContext

上面介绍了CanvasContext的构造是这样的:

mContext = mRenderThread.queue().runSync([&]() -> CanvasContext* { return CanvasContext::create(mRenderThread, translucent, rootRenderNode, contextFactory); });

最终调用的是一个create方法:

CanvasContext* CanvasContext::create(RenderThread& thread, bool translucent, RenderNode* rootRenderNode, IContextFactory* contextFactory) { auto renderType = Properties::getRenderPipelineType(); switch (renderType) { case RenderPipelineType::SkiaGL: return new CanvasContext(thread, translucent, rootRenderNode, contextFactory, std::make_unique(thread)); case RenderPipelineType::SkiaVulkan: return new CanvasContext(thread, translucent, rootRenderNode, contextFactory, std::make_unique(thread)); default: LOG_ALWAYS_FATAL("canvas context type %d not supported", (int32_t)renderType); break; } return nullptr; }

它首先根据系统属性配置,如果是使用SkialGL绘制的话,生成一个SkiaOpenGLPipeline对象,如果使用SkiaVulkan的话,就创建一个SkiaVulkanPipeline,当pipeline创建好后,用于生成CanvasContext。

CanvasContext::CanvasContext(RenderThread& thread, bool translucent, RenderNode* rootRenderNode, IContextFactory* contextFactory, std::unique_ptr renderPipeline) : mRenderThread(thread) , mGenerationID(0) , mOpaque(!translucent) , mAnimationContext(contextFactory->createAnimationContext(mRenderThread.timeLord())) , mJankTracker(&thread.globalProfileData()) , mProfiler(mJankTracker.frames(), thread.timeLord().frameIntervalNanos()) , mContentDrawBounds(0, 0, 0, 0) , mRenderPipeline(std::move(renderPipeline)) { rootRenderNode->makeRoot(); mRenderNodes.emplace_back(rootRenderNode); mProfiler.setDensity(DeviceInfo::getDensity()); }

这样CanvasContext就拥有了绘制的能力,比如RenderThread提供异步的绘制能力,mRenderPipeline提供图形绘制能力,rootRenderNode提供绘制内容。因此CanvasContext融合了绘制所需要各种的组件。

到这里HardwareRender的构造就完成了,它创建了底层的RenderProxy,启动了RenderThread,以及初始化了CanvaContext以及RenderPipeline。

3 HardwareRender的初始化

前面以及介绍了,HardwareRender对象创好出来之后,需要进行初始化,为其提供绘制所需的Surface。

boolean initialize(Surface surface) throws OutOfResourcesException { boolean status = !mInitialized; mInitialized = true; updateEnabledState(surface); setSurface(surface); return status; }

这里调用setSurface方法来这设置,从而进入到这个native方法

public void setSurface(@Nullable Surface surface, boolean discardBuffer) { if (surface != null && !surface.isValid()) { throw new IllegalArgumentException("Surface is invalid. surface.isValid() == false."); } nSetSurface(mNativeProxy, surface, discardBuffer); } static void android_view_ThreadedRenderer_setSurface(JNIEnv* env, jobject clazz, jlong proxyPtr, jobject jsurface, jboolean discardBuffer) { RenderProxy* proxy = reinterpret_cast(proxyPtr); ANativeWindow* window = nullptr; if (jsurface) { window = fromSurface(env, jsurface); } bool enableTimeout = true; if (discardBuffer) { // Currently only Surface#lockHardwareCanvas takes this path enableTimeout = false; proxy->setSwapBehavior(SwapBehavior::kSwap_discardBuffer); } proxy->setSurface(window, enableTimeout); if (window) { ANativeWindow_release(window); } }

在这里我们看到将一个Surface转换成了一个ANativeWindow,我们前面介绍过,Surface是继承自ANativeWindow的,而fromSurface函数是定义window.h的方法ANativeWindow_fromSurface,它只是作了一个类型转换,其实返回的就还是Surface本身。 frameworks/base/native/android/native_window_jni.cpp

ANativeWindow* ANativeWindow_fromSurface(JNIEnv* env, jobject surface) { sp win = android_view_Surface_getNativeWindow(env, surface); if (win != NULL) { ANativeWindow_acquire(win.get()); } return win.get(); }

ANativeWindow_acquire 和ANativeWindow_release 是分别作引用计数的增加和减少。在转换成了ANativeWinwodw之后,设置到proxy去

void RenderProxy::setSurface(ANativeWindow* window, bool enableTimeout) { if (window) { ANativeWindow_acquire(window); } mRenderThread.queue().post([this, win = window, enableTimeout]() mutable { mContext->setSurface(win, enableTimeout); if (win) { ANativeWindow_release(win); } }); }

通过王renderThread的队列中post一个任务来,将ANativeWindow 设置的到CanvasContext

void CanvasContext::setSurface(ANativeWindow* window, bool enableTimeout) { ATRACE_CALL(); if (window) { mNativeSurface = std::make_unique(window); mNativeSurface->init(); if (enableTimeout) { // TODO: Fix error handling & re-shorten timeout ANativeWindow_setDequeueTimeout(window, 4000_ms); } } else { mNativeSurface = nullptr; } setupPipelineSurface(); }

在这里先 创建一个ReliableSurface来包装window,接着调用init进行初始化,enableTimeout为true,于是设置dequeue的超时为4秒钟,然后在调用setupPipelineSurface开启绘制流水线。我们来一步步分析一下

3.1 ReliableSurface

它的构造很简单 frameworks/base/libs/hwui/renderthread/ReliableSurface.cpp

ReliableSurface::ReliableSurface(ANativeWindow* window) : mWindow(window) { LOG_ALWAYS_FATAL_IF(!mWindow, "Error, unable to wrap a nullptr"); ANativeWindow_acquire(mWindow); }

赋值给mWindow,然后增加引用计数

3.2 ReliableSurface.init void ReliableSurface::init() { int result = ANativeWindow_setCancelBufferInterceptor(mWindow, hook_cancelBuffer, this); LOG_ALWAYS_FATAL_IF(result != NO_ERROR, "Failed to set cancelBuffer interceptor: error = %d", result); result = ANativeWindow_setDequeueBufferInterceptor(mWindow, hook_dequeueBuffer, this); LOG_ALWAYS_FATAL_IF(result != NO_ERROR, "Failed to set dequeueBuffer interceptor: error = %d", result); result = ANativeWindow_setQueueBufferInterceptor(mWindow, hook_queueBuffer, this); LOG_ALWAYS_FATAL_IF(result != NO_ERROR, "Failed to set queueBuffer interceptor: error = %d", result); result = ANativeWindow_setPerformInterceptor(mWindow, hook_perform, this); LOG_ALWAYS_FATAL_IF(result != NO_ERROR, "Failed to set perform interceptor: error = %d", result); result = ANativeWindow_setQueryInterceptor(mWindow, hook_query, this); LOG_ALWAYS_FATAL_IF(result != NO_ERROR, "Failed to set query interceptor: error = %d", result); }

它init为ANativeWindow设置了5个拦截器,这个连接器在Surface本身的hook函数中执行,所以dequeueBuffer, queueBuffer,perform 和query方法都会转到到ReliableSurface来执行,我们分析一下hook_dequeueBuffer方法的拦截机制

int ReliableSurface::hook_dequeueBuffer(ANativeWindow* window, ANativeWindow_dequeueBufferFn dequeueBuffer, void* data, ANativeWindowBuffer** buffer, int* fenceFd) { ReliableSurface* rs = reinterpret_cast(data); { std::lock_guard _lock{rs->mMutex}; if (rs->mReservedBuffer) { *buffer = rs->mReservedBuffer; *fenceFd = rs->mReservedFenceFd.release(); rs->mReservedBuffer = nullptr; return OK; } } int result = dequeueBuffer(window, buffer, fenceFd); if (result != OK) { ALOGW("dequeueBuffer failed, error = %d; switching to fallback", result); *buffer = rs->acquireFallbackBuffer(result); *fenceFd = -1; return *buffer ? OK : INVALID_OPERATION; } else { std::lock_guard _lock{rs->mMutex}; rs->mHasDequeuedBuffer = true; } return OK; } data 是注册回调的时候,传入的this,因此可以转回ReliableSurface。 调用dequeueBuffer方法,这个dequeueBuffer方法是surface中在调用这个拦截器是传入的方法指针dequeueBufferInternal。 frameworks/native/libs/gui/Surface.cpp int Surface::hook_dequeueBuffer(ANativeWindow* window, ANativeWindowBuffer** buffer, int* fenceFd) { Surface* c = getSelf(window); { std::shared_lock lock(c->mInterceptorMutex); if (c->mDequeueInterceptor != nullptr) { auto interceptor = c->mDequeueInterceptor; auto data = c->mDequeueInterceptorData; return interceptor(window, Surface::dequeueBufferInternal, data, buffer, fenceFd); } } return c->dequeueBuffer(buffer, fenceFd); }

因此其实还是调用到了Surface的dequeueBufferInternal来执行dequeueBuffer。只不过这里经过了ReliableSurface一层封装,记录一下mHasDequeuedBuffer = true。

3.3 setupPipelineSurface

这一步将ANativeWindow设置到pipeline

void CanvasContext::setupPipelineSurface() { bool hasSurface = mRenderPipeline->setSurface( mNativeSurface ? mNativeSurface->getNativeWindow() : nullptr, mSwapBehavior); ... }

mRenderPipeline的类型是SkiaPipeline,而SkiaPipeline是继承自IRenderPipeline,setSurface也是定义在IRenderPipeline frameworks/base/libs/hwui/renderthread/IRenderPipeline.h

virtual bool setSurface(ANativeWindow* window, SwapBehavior swapBehavior) = 0;

实现的是根据系统属性设置的,可能是SkiaOpenGLPipeline和SkiaVulkanPipeline,我们分析一下SkiaOpenGLPipeline

frameworks/base/libs/hwui/pipeline/skia/SkiaOpenGLPipeline.cpp

bool SkiaOpenGLPipeline::setSurface(ANativeWindow* surface, SwapBehavior swapBehavior) { if (mEglSurface != EGL_NO_SURFACE) { mEglManager.destroySurface(mEglSurface); mEglSurface = EGL_NO_SURFACE; } if (surface) { mRenderThread.requireGlContext(); auto newSurface = mEglManager.createSurface(surface, mColorMode, mSurfaceColorSpace); if (!newSurface) { return false; } mEglSurface = newSurface.unwrap(); } if (mEglSurface != EGL_NO_SURFACE) { const bool preserveBuffer = (swapBehavior != SwapBehavior::kSwap_discardBuffer); mBufferPreserved = mEglManager.setPreserveBuffer(mEglSurface, preserveBuffer); return true; } return false; }

mRenderThread.requireGlContext(); 将会为RenderThread创建好使用OpenGL进行GPU绘制的上下文 接着调用mEglManager的createSurface方法,传入ANativeWindow,生成一个EGLSurface。EGL 是OpenGL 与 Android 窗口的桥接。

frameworks/base/libs/hwui/renderthread/EglManager.cpp

Result EglManager::createSurface(EGLNativeWindowType window, ColorMode colorMode, sk_sp colorSpace) { ... EGLSurface surface = eglCreateWindowSurface(mEglDisplay, config, window, attribs); if (surface == EGL_NO_SURFACE) { return Error{eglGetError()}; } ... return surface; }

ELGSurface是一个指针 frameworks/native/opengl/include/EGL/eglext.h

typedef void *EGLSurface;

eglCreateWindowSurface的实现如下

frameworks/native/opengl/libs/EGL/eglApi.cpp

EGLSurface eglCreateWindowSurface(EGLDisplay dpy, EGLConfig config, NativeWindowType window, const EGLint* attrib_list) { clearError(); egl_connection_t* const cnx = &gEGLImpl; return cnx->platform.eglCreateWindowSurface(dpy, config, window, attrib_list); }

egl_connection_t的定义在这个头文件:

frameworks/native/opengl/libs/EGL/egldefs.h

struct egl_connection_t { ... egl_t egl; platform_impl_t platform; ... }; extern egl_connection_t gEGLImpl;

platform又是另外一个结构体类型platform_impl_t

struct platform_impl_t { #include "platform_entries.in" };

frameworks/native/opengl/libs/platform_entries.in

EGL_ENTRY(EGLSurface, eglCreateWindowSurface, EGLDisplay, EGLConfig, NativeWindowType, const EGLint*)

frameworks/native/opengl/libs/hooks.h

#define EGL_ENTRY(_r, _api, ...) _r (*(_api))(__VA_ARGS__);

展开就等于:

EGLSurface *(eglCreateWindowSurface)(EGLDisplay, EGLConfig, NativeWindowType, const EGLint *)

这个函数的实现在这里 frameworks/native/opengl/libs/EGL/egl_platform_entries.cpp

static const implementation_map_t sPlatformImplMap[] = { ... { "eglCreateWindowSurface", (EGLFuncPointer)&eglCreateWindowSurfaceImpl }, ... } EGLSurface eglCreateWindowSurfaceImpl(EGLDisplay dpy, EGLConfig config, NativeWindowType window, const EGLint* attrib_list) { egl_connection_t* cnx = nullptr; egl_display_t* dp = validate_display_connection(dpy, &cnx); if (dp) { return eglCreateWindowSurfaceTmpl< EGLint, PFNEGLCREATEWINDOWSURFACEPROC>(dp, cnx, config, window, attrib_list, cnx->egl.eglCreateWindowSurface); } return EGL_NO_SURFACE; }

继续调用了eglCreateWindowSurfaceTmpl来生成EGLSurface。 这个函数的最后一个参数cnx->egl.eglCreateWindowSurface是一个方法指针。在上面的代码有列出,其中cnx->egl是一个egl_t类型的结构体,定义也是在hooks里,

struct egl_t { #include "EGL/egl_entries.in" };

frameworks/native/opengl/libs/EGL/egl_entries.in```

EGL_ENTRY(EGLSurface, eglCreateWindowSurface, EGLDisplay, EGLConfig, NativeWindowType, const EGLint *)

展开之后,结果如下:

EGLSurface *(eglCreateWindowSurface)(EGLDisplay, EGLConfig, NativeWindowType, const EGLint *)

因此调用eglCreateWindowSurfaceTmpl方法的最后一个参数就是这个函数。我看一下这个函数

frameworks/native/opengl/libs/EGL/egl_platform_entries.cpp

template EGLSurface eglCreateWindowSurfaceTmpl(egl_display_t* dp, egl_connection_t* cnx, EGLConfig config, ANativeWindow* window, const AttrType* attrib_list, CreateFuncType createWindowSurfaceFunc) { ... window->query(window, NATIVE_WINDOW_IS_VALID, &value); if (!value) { return setError(EGL_BAD_NATIVE_WINDOW, EGL_NO_SURFACE); } .... int result = native_window_api_connect(window, NATIVE_WINDOW_API_EGL); ... int err = native_window_set_buffers_format(window, format); .... window->setSwapInterval(window, 1); EGLSurface surface = createWindowSurfaceFunc(iDpy, config, window, attrib_list); if (surface != EGL_NO_SURFACE) { egl_surface_t* s = new egl_surface_t(dp, config, window, surface, getReportedColorSpace(colorSpace), cnx); return s; } // EGLSurface creation failed if (!cnx->useAngle) { native_window_set_buffers_format(window, 0); native_window_api_disconnect(window, NATIVE_WINDOW_API_EGL); } return EGL_NO_SURFACE; }

这里先对window作了一些操作,比如native_window_api_connect, 它会执行Surface的perform方法,最后调用到Surface的connect方法,但是因为现在BufferQueue是由App进程自己管理了,因此connect里并没有IPC的调用。最后执行createWindowSurfaceFunc函数来生成EGLSurface,然后包装成egl_surface_t返回去。createWindowSurfaceFunc* 是来自于cnx->egl. 这个egl是全局的,它是在初始化时,加载EGL驱动的时候赋值的,具体的逻辑比较复杂,所以它的内容就不再此处展开了。

frameworks/native/opengl/libs/EGL/egl_object.h.

class egl_surface_t : public egl_object_t { ... egl_surface_t(egl_display_t* dpy, EGLConfig config, EGLNativeWindowType win, EGLSurface surface, EGLint colorSpace, egl_connection_t const* cnx);

这里可以看到egl_surface_t的定义,因为EGLSurface仅仅是一个指针,因此可以返回这个对象,同时我们也知道了后面使用的EGLSurface本质上是一个egl_surface_t对象。

4 总结

HardrwareRender的初始化需要从Java层传入Surface,这个Surface在C层将以ANativeWindow的形式被使用。 在初始化后,C 层会创建一个RenderProxy,启动一个RenderThread以及创建CanvasContext,它包含一个RenderPipeline,RenderPipeline通过EGLManager生成EGLSuface,它的类型只一个指针,实际指向一个egl_surface_t结构体,最终这个EGLSurfacec实际持有这个Surface对象,从而为后面通过EGL绘制搭建好环境。



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3